Magnetic-field asymmetry of nonlinear mesoscopic transport.
نویسندگان
چکیده
We investigate departures of the Onsager relations in the nonlinear regime of electronic transport through mesoscopic systems. We show that the nonlinear current-voltage characteristic is not an even function of the magnetic field due only to the magnetic-field dependence of the screening potential within the conductor. We illustrate this result for two types of conductors: A quantum Hall bar with an antidot and a chaotic cavity connected to quantum point contacts. For the chaotic cavity we obtain through random matrix theory an asymmetry in the fluctuations of the nonlinear conductance that vanishes rapidly with the size of the contacts.
منابع مشابه
Magnetic field symmetry and phase rigidity of the nonlinear conductance in a ring.
We have performed nonlinear transport measurements as a function of a perpendicular magnetic field in a semiconductor Aharonov-Bohm ring connected to two leads. While the voltage-symmetric part of the conductance is symmetric in the magnetic field, the voltage-antisymmetric part of the conductance is not symmetric. These symmetry relations are compatible with the scattering theory for nonlinear...
متن کاملMagnetic-field asymmetry of nonlinear transport in carbon nanotubes.
We demonstrate that nonlinear electrical transport through a two-terminal nanoscale sample is not symmetric in the magnetic field B. More specifically, we have measured the lowest order B-asymmetric terms in single-walled carbon nanotubes. Theoretically, these terms can be used to infer both the strength of electron-electron interactions and the handedness of the nanotube. Consistent with theor...
متن کامل7 Rectification and nonlinear transport in chaotic dots and rings
We investigate the nonlinear current-voltage characteristic of mesoscopic conductors and the current generated through rectification of an alternating external bias. To leading order in applied voltages both the nonlinear and the rectified current are quadratic. This current response can be described in terms of second order conductance coefficients and for a generic mesoscopic conductor they f...
متن کاملAsymmetry of nonlinear transport and electron interactions in quantum dots.
The symmetry properties of transport beyond the linear regime in chaotic quantum dots are investigated experimentally. A component of differential conductance that is antisymmetric in both applied source-drain bias V and magnetic field B, absent in linear transport, is found to exhibit mesoscopic fluctuations around a zero average. Typical values of this component allow a measurement of the ele...
متن کاملشبیه سازی اثر بی نظمی و میدان مغناطیسی بر ترابرد کوانتومی نانوساختارهای دو بعدی مدل شده با تقریب تنگابست
In recent years, semiconductor nanostructures have become the model systems of choice for investigation of electrical conduction on short length scales. Quantum transport is studied in a two dimensional electron gas because of the combination of a large Fermi wavelength and large mean free path. In the present work, a numerical method is implemented in order to contribute to the understanding ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 93 10 شماره
صفحات -
تاریخ انتشار 2004